Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Korean Med Sci ; 37(32): e250, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1993761

ABSTRACT

The aim of our study was to investigate the incidence of and risk factors for coronavirus disease 2019 (COVID-19) in patients with non-tuberculous mycobacterial-pulmonary disease (NTM-PD). A total of 3,866 patients with NTM-PD were retrospectively identified from a single center. Compared to the general population of Korea, patients with NTM-PD had a substantially increased age-standardized incidence of COVID-19 from January 2020 to February 2021 (2.1% vs. 0.2%). The odds of being infected with COVID-19 was particularly higher in patients who received treatment for NTM-PD than in those who did not receive treatment for NTM-PD (adjusted odd ratio = 1.99, 95% confidence interval = 1.09-3.64, P = 0.026). Patients with NTM-PD might be regarded as a high-risk group for COVID-19 and may need a more proactive preventive strategy for COVID-19 and other pandemics in the future.


Subject(s)
COVID-19 , Lung Diseases , Mycobacterium Infections, Nontuberculous , COVID-19/epidemiology , Humans , Incidence , Lung Diseases/epidemiology , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Republic of Korea/epidemiology , Retrospective Studies
2.
Infect Drug Resist ; 15: 3347-3355, 2022.
Article in English | MEDLINE | ID: covidwho-1923798

ABSTRACT

Background: Nontuberculous mycobacteria (NTM) and their associated diseases remain neglected. Through minor modifications in our diagnostic algorithm, we observed an unexpected higher number of cultivable NTM isolates. Therefore, a retrospective study was performed thoroughly to investigate the effect of changed laboratory procedures on NTM isolation in a specialized tuberculosis hospital. Methods: NTM isolation rates and composition of NTM species were compared for the two diagnostic algorithms: (1) by using traditional p-nitrobenzoic acid (PNB) selective medium as a preliminary test to identify NTM isolates among the positive cultures (procedure I) and (2) by using the MPT64 antigen detection method to distinguish between Mycobacterium tuberculosis complex (MTBC) isolates and possible NTM isolates after a positive MGIT960 liquid culture (procedure II). Results: The NTM isolation rate in procedure II was significantly higher than the procedure I (18.08% vs 9.71%; P<0.001). A noticeable increase in the ratio of NTM isolates among the identified mycobacteria was observed over the studied years (ie, from 58.18% in 2019 to 72.93% in 2021), which indicated a more precise prescription of species identification test after prompt information was provided in procedure II. In addition, the consistency of the identified species using multiple specimens from the same patient did not present a significant difference between the procedures. Conclusion: According to our study, NTM infection might be far more underestimated than it is. A diagnostic procedure combining MGIT960 culture and MPT64 antigen detection could timely and easily identify clues of NTM isolates and improve the diagnosis of NTM infections.

3.
Int J Infect Dis ; 118: 65-70, 2022 May.
Article in English | MEDLINE | ID: covidwho-1838853

ABSTRACT

OBJECTIVES: Cross-reactivity with nontuberculous mycobacteria (NTM) species might limit the use of urine lipoarabinomannan (LAM) test to diagnose tuberculosis (TB) in people living with HIV (PLWH). This study aimed to investigate the utility of the LAM test among hospitalized HIV-positive patients. METHODS: This prospective study enrolled HIV-positive inpatients with any TB symptom or seriously ill patients with advanced immunodeficiency. Urine samples were tested using the Alere Determine LAM Ag, and participants were categorized as confirmed TB, confirmed NTM infection, unclassified mycobacteria infection, and no mycobacteria infection based on microbiologic reference standards. RESULTS: A total of 382 participants were included. The prevalence of confirmed TB and NTM infection was 5.24% (20 of 382) and 4.45% (17 of 382), respectively. The sensitivity and specificity of the urine LAM for TB diagnosis were 65.00% (95% confidence interval [CI] 40.78-84.61) and 89.36% (95% CI 85.68-92.36), respectively. The LAM test for NTM yielded a sensitivity of 58.82% (95% CI 32.92-81.56) and specificity of 88.61% (95% CI 84.87-91.70). Notably, the negative predictive values of the urine LAM for TB and NTM were 97.85% (95% CI 95.63-99.13) and 97.85% (95% CI 95.63-99.13), respectively. CONCLUSIONS: Cross-reactivity with NTM cause high false-positive LAM for TB diagnosis in PLWH. The correct identification of mycobacteria species is crucial for deciding treatment strategies.


Subject(s)
HIV Infections , HIV Seropositivity , Mycobacterium Infections, Nontuberculous , Tuberculosis , HIV Infections/epidemiology , Humans , Lipopolysaccharides/urine , Mycobacterium Infections, Nontuberculous/diagnosis , Nontuberculous Mycobacteria , Prospective Studies , Tuberculosis/diagnosis , Tuberculosis/epidemiology
4.
ATS Sch ; 2(3): 452-467, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1478979

ABSTRACT

The following is a concise review of the Pediatric Pulmonary Medicine Core reviewing pediatric pulmonary infections, diagnostic assays, and imaging techniques presented at the 2021 American Thoracic Society Core Curriculum. Molecular methods have revolutionized microbiology. We highlight the need to collect appropriate samples for detection of specific pathogens or for panels and understand the limitations of the assays. Considerable progress has been made in imaging modalities for detecting pediatric pulmonary infections. Specifically, lung ultrasound and lung magnetic resonance imaging are promising radiation-free diagnostic tools, with results comparable with their radiation-exposing counterparts, for the evaluation and management of pulmonary infections. Clinicians caring for children with pulmonary disease should ensure that patients at risk for nontuberculous mycobacteria disease are identified and receive appropriate nontuberculous mycobacteria screening, monitoring, and treatment. Children with coronavirus disease (COVID-19) typically present with mild symptoms, but some may develop severe disease. Treatment is mainly supportive care, and most patients make a full recovery. Anticipatory guidance and appropriate counseling from pediatricians on social distancing and diagnostic testing remain vital to curbing the pandemic. The pediatric immunocompromised patient is at risk for invasive and opportunistic pulmonary infections. Prompt recognition of predisposing risk factors, combined with knowledge of clinical characteristics of microbial pathogens, can assist in the diagnosis and treatment of specific bacterial, viral, or fungal diseases.

5.
Antibiotics (Basel) ; 10(4)2021 Apr 03.
Article in English | MEDLINE | ID: covidwho-1232556

ABSTRACT

Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.

6.
ATS Sch ; 1(4): 416-435, 2020 Oct 08.
Article in English | MEDLINE | ID: covidwho-1191227

ABSTRACT

The American Thoracic Society Core Curriculum updates clinicians annually in adult and pediatric pulmonary disease, medical critical care, and sleep medicine in a 3- to 4-year recurring cycle of topics. The topics of the 2020 Pulmonary Core Curriculum include pulmonary vascular disease (submassive pulmonary embolism, chronic thromboembolic pulmonary hypertension, and pulmonary hypertension) and pulmonary infections (community-acquired pneumonia, pulmonary nontuberculous mycobacteria, opportunistic infections in immunocompromised hosts, and coronavirus disease [COVID-19]).

7.
Int J Mol Sci ; 21(17)2020 Aug 27.
Article in English | MEDLINE | ID: covidwho-831264

ABSTRACT

Outside of Mycobacterium tuberculosis and Mycobacterium leprae, nontuberculous mycobacteria (NTM) are environmental mycobacteria (>190 species) and are classified as slow- or rapid-growing mycobacteria. Infections caused by NTM show an increased incidence in immunocompromised patients and patients with underlying structural lung disease. The true global prevalence of NTM infections remains unknown because many countries do not require mandatory reporting of the infection. This is coupled with a challenging diagnosis and identification of the species. Current therapies for treatment of NTM infections require multidrug regimens for a minimum of 18 months and are associated with serious adverse reactions, infection relapse, and high reinfection rates, necessitating discovery of novel antimycobacterial agents. Robust drug discovery processes have discovered inhibitors targeting mycobacterial membrane protein large 3 (MmpL3), a protein responsible for translocating mycolic acids from the inner membrane to periplasm in the biosynthesis of the mycobacterial cell membrane. This review focuses on promising new chemical scaffolds that inhibit MmpL3 function and represent interesting and promising putative drug candidates for the treatment of NTM infections. Additionally, agents (FS-1, SMARt-420, C10) that promote reversion of drug resistance are also reviewed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Membrane Transport Proteins/metabolism , Mycobacterium Infections, Nontuberculous/drug therapy , Nontuberculous Mycobacteria/metabolism , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Biological Transport/drug effects , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Humans , Iodophors/pharmacology , Iodophors/therapeutic use , Isoxazoles/pharmacology , Isoxazoles/therapeutic use , Mycobacterium Infections, Nontuberculous/metabolism , Mycolic Acids/metabolism , Nontuberculous Mycobacteria/drug effects , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Spiro Compounds/pharmacology , Spiro Compounds/therapeutic use
8.
Antibiotics (Basel) ; 9(9)2020 Sep 02.
Article in English | MEDLINE | ID: covidwho-742741

ABSTRACT

Mycobacterial infections are a resurgent and increasingly relevant problem. Within these, tuberculosis (TB) is particularly worrying as it is one of the top ten causes of death in the world and is the infectious disease that causes the highest number of deaths. A further concern is the on-going emergence of antimicrobial resistance, which seriously limits treatment. The COVID-19 pandemic has worsened current circumstances and future infections will be more incident. It is urgent to plan, draw solutions, and act to mitigate these issues, namely by exploring new approaches. The aims of this review are to showcase the extensive research and application of silver nanoparticles (AgNPs) and other metal nanoparticles (MNPs) as antimicrobial agents. We highlight the advantages of mycogenic synthesis, and report on their underexplored potential as agents in the fight against all mycobacterioses (non-tuberculous mycobacterial infections as well as TB). We propose further exploration of this field.

SELECTION OF CITATIONS
SEARCH DETAIL